NMDA receptor currents suppress synapse formation on sprouting axons in vivo.
نویسندگان
چکیده
NMDA receptors (NMDARs) play an important role in the structural maintenance and functional strength of synapses. The causal relationship between these anatomical and functional roles is poorly defined. Using quantitative confocal microscopy, synaptic vesicle immunoreactivity, and differential label of retinal projections, we measured axon volume and synapse density along ipsilateral retinal axons (ipsi axons) sprouting into the superficial visual layers of the superior colliculus (sSC) deafferented by a contralateral retinal lesion (a scotoma) 8 d earlier. When retinal lesions were made at postnatal day 6 (P6), glutamatergic synaptic currents on neurons within the scotoma were significantly reduced. Both ipsi axon sprouting and synapse density were increased by chronic d-AP-5 antagonism of NMDARs. Conversely, ipsi axon sprouting and synapse density were reduced by chronic exposure to the agonist, NMDA, known to functionally depress glutamate transmission in this system. After P11 lesions, however, NMDAR blockade had no effect on sprouting or synapse density. Developmental changes in NMDAR current kinetics could not account for this difference in the structural effects of NMDAR function. Also, synaptic current frequencies within the scotoma were not affected after the P11 lesions. The corticocollicular projection matures during the P11 survival interval and, as indicated by previous work, it is a source of competition for synaptic space and probably of maintained activity in the older sSC. Thus, our results suggest that during early development, NMDAR currents predominantly destabilize nascent synapses. As the neuropil matures, however, competition for synaptic space suppresses axon sprouting and synapse formation regardless of NMDAR function.
منابع مشابه
Experimental down-regulation of the NMDA channel associated with synapse pruning.
The N-methyl-D-aspartate (NMDA) receptor has been implicated in activity-dependent synapse stabilization, but its role as a detector of correlated activity during development is debated. In the amphibian retinotectal system, synaptic sorting and stabilization occur throughout larval life, and map refinement is dependent on continuous NMDA receptor function. Moreover, tadpole tecta chronically t...
متن کاملInteraction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses.
Recently, NMDA receptors (NMDARs) have been implicated in a cell contact-dependent suppression of sprouting in cultured Xenopus tectal neurons during an early period when neither AMPA/kainate (KA) receptors nor action potentials play a prominent role in cell-cell communication. We asked how the NMDA receptors function in the absence of the depolarizing effect of AMPA/KA receptor activity. We sh...
متن کاملExperience-Dependent Plasticity and the Maturation of Glutamatergic Synapses
Early Development of Glutamatergic Synaptic Currents The majority of fast excitatory neurotransmission in the CNS is mediated by ionotropic glutamate receptors, which are divided into NMDA, AMPA, and kainate receptor subtypes on the basis of the biophysical properties of their currents, their sensitivity to different pharmaco-Glutamatergic synaptic currents undergo a characteris-logical agents,...
متن کاملThe dynamic distribution of TrkB receptors before, during, and after synapse formation between cortical neurons.
Although brain-derived neurotrophic factor (BDNF) potently regulates neuronal connectivity in the developing CNS, the mechanism by which BDNF influences the formation and/or maintenance of glutamatergic synapses remains unknown. Details about the subcellular localization of the BDNF receptor, TrkB, relative to synaptic and nonsynaptic proteins on excitatory neurons should provide insight into h...
متن کاملGlycine transporter-1 inhibition promotes striatal axon sprouting via NMDA receptors in dopamine neurons.
NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal stri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2005